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When a flexible polymer is sucked into a localized small hole, the chain can initially respond only locally
and the sequential nonequilibrium processes follow in line with the propagation of the tensile force along the
chain backbone. We analyze this dynamical process by taking the nonuniform stretching of the polymer into
account both with and without hydrodynamics interactions. Earlier conjectures on the absorption time are
criticized and formulas are proposed together with time evolutions of relevant dynamical variables.
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I. INTRODUCTION

A long flexible polymer is one of the representative ex-
amples of soft matter. A common feature of soft matter is a
presence of mesoscopic length scales, which is, in many re-
spects, responsible for their unique properties such as the
high susceptibility. For dilute polymer solutions �with each
chain made of N0 succession of monomers of size b�, this
corresponds to the Flory radius R0=bN0

� of individual coils,
which serves as a basis for the scaling theory �1�. From the
estimation of the elastic modulus �kBT /R0

3, one can realize
an important consequence that a long chain is readily ex-
posed to significant distortions, such as stretching and com-
pression, by rather weak perturbations.

Although the extension of a polymer in various flow fields
or by mechanical stretching has been extensively studied
�1–6�, most attention so far has been focused on equilibrium
or steady state properties. One can also ask about the dy-
namical process from one steady state to the other induced
by a sudden change of external field �7�, which would be
important in relation to the recent development of microma-
nipulation techniques. For instance, imagine that an initially
relaxed polymer suddenly starts to be pulled by its one end

�see Appendix C�. If the force is sufficiently weak, f̃R0
�1, a

chain as a whole follows at the average velocity v
� f / ��sR0� ��s is the solvent viscosity� keeping the equilib-
rium conformation. �Here and in what follows, we denote the

dimensionless force f̃ x� fx / �kBT�, where x has the dimen-

sion of the length.� For large force f̃R0
�1, however, only a

part of the chain can respond immediately, while the remain-
ing rear part does not feel the force yet. As time goes on, the
tension propagates along the chain, which alters chain con-
formation progressively, and the steady state is reached after
a characteristic time. At room temperature, the critical force
f ��kBT� /R0 is estimated to be on the order of piconewton
for a flexible chain with N=100–1000, comparable to the
usual force range in the single molecule manipulation experi-
ments with atomic force microscopy and optical tweezer.
The force generated by molecular motors also falls into this
range. This implies a possible importance of such a nonequi-
librium response in many biological as well as technological
situations.

In the present paper, we illustrate such a nonequilibrium
response using an example of polymer absorption or aspira-
tion into a small spot. Our target here is the dynamical pro-
cess, in which a polymer is sucked into a localized hole. This
is different from pulling the chain’s one end �8�, but similar
to how the chain responds to the local force, and, in fact,
relevant to the dynamics of polymer translocation through
the hole �9,10� and the adsorption process to a small particle.
�In this case, the force f is related to the chemical potential
change �� due to the absorption via f =�� /b.� Although the
phenomenon of polymer translocation has been an active re-
search topic in the past decade as a model for biopolymer
transport through a pore in membrane, our current under-
standing for the dynamics, in particular the strongly driven
case, is restrictive. So far, the scaling estimates of the char-
acteristic time � for the absorption process in immobile sol-
vents have been proposed �8,11�. Grosberg et al. argued the
absorption time for a Rouse chain on the grounds that Rouse
time �R=�0N0

2 is the solitary relevant time scale ��0
��sb

3 / �kBT� is a microscopic time scale�, and all other rel-
evant parameters appear in the dimensionless combination

f̃R0
, thus,

� = �R	� f̃R0
� . �1�

The scaling function 	 is determined from the requirement
that the speed of the process N0 /� must be linear in the
applied force, leading to

� =
�sb

2

f
N0

3/2. �2�

This result was interpreted as a sequential straightening of
“folds” �11�. For a chain with excluded volume studied by
Kantor and Karder, a similar scaling argument leads to �8�

� � N0
1+�/f , �3�

where the Flory exponent �=1/2 for a chain in 
 solvent,
while in good solvent ��3/5 �in space dimension D=3� and
�=3/4 �in D=2�.

We tackle this problem through a different approach by
explicitly considering the dynamics of the tension propaga-
tion. This enables us to unveil the physics behind the non-
equilibrium driven absorption and go beyond the previous
works by taking the excluded volume effect and/or hydrody-*sakaue@scphys.kyoto-u.ac.jp
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namics interactions into account. We indeed find that Eqs. �2�
and �3� are not generally correct as a consequence of the
salient feature of a flexible chain that the response to the
aspiration or stretching force is nonuniform both in space
and time. At very strong driving, the finite chain extensibility
matters, and this leads us to propose three distinguished re-
gimes for the absorption process depending on the degree of
forcing. Interestingly, we shall see that Eqs. �2� and �3� are
recovered in the limit of very strong forcing only. In addition
to the absorption time, we can also predict the time evolu-
tions of dynamical variables governing this nonequilibrium
process. Below, the problem of the dynamical response is
formulated with basic equations and the absorption dynamics
is analyzed in Sec. II A. Then, Secs. II B and II C are de-
voted to discussions on the effect of the finite chain extensi-
bility and hydrodynamic interactions, respectively. A sum-
mary and future perspectives are given in Sec. III. Some
technical details and mathematics are given in Appendixes A
and B. Another example of nonequilibrium response, i.e., a
sudden pulling of a chain by its one end, is briefly discussed
in Appendix C.

II. FORMULATION

A. Dynamical response to strong forcing

Now, let us imagine the moment when one end of the
chain arrives at the attractive hole at the origin �Fig. 1�. The
fact that the first monomer is strongly pulled influences the
rear vicinity immediately, but not far away. If we notice the
subunit consisted of first g0 monomers of size y0=bg0

�, this
subunit starts to move with the average velocity v0
� f / ��sy0�, provided that the deformation is insignificant in
this scale. The size of such a subunit is deduced by compar-
ing the longest relaxation time of the subunit �0g0

3� to the
velocity gradient v0 /y0,

g0 � � kBT

fb
	1/�

⇔ y0 �
kBT

f
�4�

and this constitutes the initial condition.
The absorption process proceeds with time; at time t, the

tension is transmitted up to the N�t�th monomer, while M�t�
front monomers are already absorbed �Fig. 1�. This indicates
the presence of an “interface”, i.e., the part of chain, which is
not absorbed yet, can be regarded as being separated into two
distinguished states; one �the chain portion at �x�−R�t�� is
equilibrium at rest, and the other �the chain portion at
�−R�t��x�0�� takes a steady state conformation moving
with the average velocity v�t�. The transient dynamics is,
thus, described as the motion of this “interface” �12�. Here
the drag force builds up along the chain starting from a free
boundary �x=−R�t�� to the origin, which makes the overall
chain shape reminiscent to a “trumpet” �5�. It means that the
length scale y�x� set by the large tensile force, above which
the chain is substantially elongated, is position dependent;
thus the elastic behavior of the chain is described as a se-
quence of blobs with growing size y�x�=bg�x��. This leads to
the following local force balance equation:

y�x� �
kBT

�sv�t�� 1

x + R�t�	 �− R�t� + yR�t� � x � 0� , �5�

where we introduce the cutoff length yR�t�, which signifies
the size of the largest blob at the free boundary:

y�− R�t� + yR�t�� � yR�t� ⇔ yR�t� � � kBT

�sv�t�
	1/2

�at x = − R�t� + yR�t�� . �6�

�Note that throughout the paper, we neglect the logarithmic
factor associated with the friction of asymmetric objects in
the low Reynolds number �13� regime as well as other nu-
merical coefficients of order unity unless specified.� The
mass conservation reads



−R�t�

0

��x�S�x�dx + M�t� = N�t� , �7�

where ��x��g�x� /y�x�3 is the monomer density �y�x�
=bg�x��� and S�x��y�x�2 is the cross-sectional area of the
conformation. Equations �5� and �7� constitute basic equa-

R(t)
l(t)

x

R(t)

yRRRR(t)

f

x

f

M(t)N(t)

M(t)N(t)

FIG. 1. �Color online� A dynamical response of a polymer ini-
tially at rest to the strong aspiration. A chain is pulled from the �x
�0� region to the aspiration spot located at the origin. Monomers in
the gray region are under the influence of the tensile force, while
monomers in the rear part are yet relaxed. The distance between the
boundary �associated with tension propagation� and the origin and
the size of the largest blob at the boundary are denoted as R�t� and
yR�t�, respectively. Monomers are sequentially labeled as
1 ,2 , . . . ,N0 from one end �arriving at the origin initially� to the
other. M�t� and N�t� are, respectively, labels of the monomers re-

siding at the origin and the boundary at time t. �Top� N0
−�� f̃ b�1

and �bottom� 1� f̃ b�N0
�, in which the anterior part �−l�t��x�0� is

completely stretched.
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tions supplemented with the following statistical relation
available from the conformation at rest �t�0�:

bN�t�� = R�t� �8�

and “boundary conditions” both at the free boundary Eq. �6�
and the origin

�sR�t�v�t� � f . �9�

These conditions express the force balance at the free end
and the total force balance, respectively.

After casting Eq. �7� in the differential form

��S��x=−R�t���dR�t�
dt

+ v�t�	 =
dN�R�

dt
, �10�

we obtain the following equation for the tension propagation
�see Appendix A and B�:

�R�t�
R0

	�3�+1�/2��R�t��
�R0�

=
t

�1
. �11�

With the symbol x possessing the dimension of length �recall

once again the definition of the dimensionless force f̃ x�, the
function �x� is defined as

�x� � 1 − B0� f̃ x���−1�/2� + �B0 − 1�� f̃ x�−�3�+1�/2� �12�

�1 − B0� f̃ x���−1�/2�, �13�

where B0 is the numerical coefficient of order unity and �1 is
the time, when the other side of the chain end reaches the
steady state and gets set into motion due to the tensile force;
R��1�=R0, thus

�1 = �Z� f̃R0
��1−3��/2��R0� , �14�

where �Z=�0N0
3� is the Zimm time. We notice that the time �1

obtained here satisfies the scaling form of Eq. �1� with the
replacement of �R by �Z.

The number of the monomers absorbed is calculated as

M�t� = 

0

t

��S�x=0v�s�ds , �15�

which can be shown to reach M1=N0�1− � f̃R0
���−1�/�� at t

=�1. After that, the whole yet nonabsorbed part of the chain
is under the tension and pulled toward the hole, thus the
evolution of M�t� is governed by

− �s�dL�t�
dt

	L�t� � f , �16�

where L�t� is the long axis length of the nonabsorbed chain.
This leads to �18�

M�t� = M1 + f̃R0
� f̃ b�−1/��1 − �1 − f̃R0

� t − �1

�Z
	1/2�

�t � �1� . �17�

The absorption process completes at time ���1+�2 with

�2 � �Z� f̃R0
�−1. �18�

The time evolution of M�t� is plotted in Fig. 2 for N0

=103 under various forces. One can see that the first stage of
the tension propagation dominates the most processes under

the large force f̃R0
�1. In this case, from Eq. �14�, the ab-

sorption time is approximated as

� � �Z� f̃R0
��1−3��/2� � �0� f̃ b��1−3��/2�N0

�3�+1�/2. �19�

In more specific form, ��N7/5 / f2/3 for a chain in good sol-
vent ��=3/5� and ��N5/4 / f1/2 for a chain in 
 solvent,
which are apparently different from earlier conjectures �Eqs.
�2� and �3��. As Eq. �11� indicates, time evolutions of
dynamical variables with suitable normalization are

represented by master curves parametrized by values of f̃R0
in this tension propagation stage �thus almost all the absorp-
tion process�. Figure 3 exemplifies the time evolution of
M�t� with the normalization M�t� /M1 and t /�1, where M1

=N0�1− � f̃R0
���−1�/��. The larger the scaled force f̃R0

, the
sooner the master curve approaches the asymptotic line with
the slope �1+�� / �1+3��.

B. Effect of finite chain extensibility

The above argument is valid as long as f̃ b�1. For larger
forces, as one can see from Eq. �4�, the chain close to the

0.0 5.0x104 1.0x105
0.0

5.0x10

1.0x103

=50

=10
=5

M(t)

t/τ 0

~fR0
2

~fR0~fR0

FIG. 2. Time evolutions of number of absorbed monomers M�t�
at various forces for the chain length N0=103 under good solvent
condition ��=3/5�. Inflectionlike points mark the end of the tension
propagation stage �t=�1 and M =M1�.
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FIG. 3. �Color online� Normalized time evolutions �double loga-
rithmic scale� of number of absorbed monomers M�t /�1� /M1 at
various scaled forces in the tension propagation stage under a good
solvent condition ��=3/5�.
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origin is completely stretched �see the bottom of Fig. 1�. To
include such an effect, let us begin with the limit of strong

force � f̃ b�N0
�� �19�. Then, at any moment, the entropic coil-

ing is completely irrelevant for the tensed part of the chain.
We can repeat the same argument by setting y�x�=b for
�−R�t��x�0�, and find

�R�t�
R0

	 = � t

�1
	�/�1+��

�20�

with

�1 = �0� f̃ b�−1N0
1+� = �R� f̃R0

�−1, �21�

where Rouse time �R=�0N0�R0 /b�2 �for a chain with Flory
exponent �� appears as a characteristic time reflecting the
fact that the backflow effect is nearly negligible in this strong
pulling limit. It is noted that Eq. �21� coincides with Eqs. �2�
and �3�.

For the intermediate case of 1� f̃ b�N0
�, this process of

strong pulling limit is valid until the time �1
*. This time is

determined by monitoring the monomer at the free boundary;
the velocity of the tense string of length l�t�=N�t�b is given
by

v�t� = b
dN�R�

dt
� b� f̃ b

�0
	1/�1+��

t−�/�1+��, �22�

where we have utilized Eqs. �8� and �20�. This quantity de-
creases with time and at t=�1

* the drag force for the free
boundary monomer becomes comparable to kBT /b.

�sbv��1
*� �

kBT

b
. �23�

From this, we find

�1
* = �0� f̃ b�1/�. �24�

After �1
*, the conformation of the chain under tension is a

completely stretched string of length l�t� followed by coiled
subunits with growing size �6�. For the latter part, we can
apply the aforementioned analysis for the trumpet, where the
“boundary condition” is imposed not at the origin but at x
= l�t�. Setting R�t�= l�t� and y�t�=b in the local force balance
equation �Eq. �5�� yields

l�t� � R�t� −
kBT

�sbv�t�
� R�t��1 − � f̃ b�−1� , �25�

where the second equality utilizes the total force balance
�sv�t�R�t�� f . More precisely, Eq. �25� should be written as

p �
l�t�
R�t�

� 1 − c0� f̃ b�−1, �26�

where c0 is the logarithmic factor dependent on l�t� and R�t�.
Ignoring this small correction allows us to derive the follow-
ing form of the tension propagation dynamics at t��1

*:

t − �1
*

�1 − �1
* = �R�t�

R0
	�3�+1�/2�*�R�t��

*�R0�
, �27�

where the function *�x� and the time �1
* are, respectively,

defined as

*�x� � �1 − p�3�+1�/2�� − B0� f̃ x���−1�/2��1 − p2� , �28�

�1 − �1
* = �Z� f̃R0

��1−3��/2�*�R0� . �29�

Absorption time is approximated by the time �1 when the
tension reaches the other end; thus, from Eqs. �24� and �29�

� � �Z� f̃R0
��1−3��/2��*�R0� + � f̃ b

N0
�	�1+3��/2�� . �30�

Utilizing the asymptotic behaviors of Eq. �26�, i.e., p→0 for

f̃ b→1, and p→1 for f̃ b�1, Eq. �30� shows smooth cross-

overs to the trumpet regime Eq. �19� at f̃ b→1 and strong

pulling limit Eq. �21� at f̃ b→N0
�.

C. Effect of hydrodynamic interactions

At certain situations, hydrodynamic interactions may be-
come screened, i.e., a polymer confined in a narrow slit or in
melt of short chains. Then, a question arises: what is the
effect of the hydrodynamics in this dynamical process? To
answer this, let us “switch off” the induced flow of solvents.
Then, the only requisite alteration is the dissipation mecha-
nism, which becomes local and independent of the chain
conformation. The local force balance is, instead of Eq. �5�,
written as

kBT

y�x�
� �sbv�t�


−R�t�

x

dx�
g�x��
y�x��

, �31�

where g�x� is related to y�x� through y�x�=bg�x��. The larg-
est blob size at the free boundary is

yR�t� � b� kBT

b2�sv�t�
	�/�1+��

. �32�

One can analyze along the same line as the chain in mobile

solvents. In particular, �1 for the moderate forcing � f̃ b�1� is
obtained as

�1 = �R� f̃R0
�−2/�1+��R�R0� �33�

with

R�x� � 1 − B0� f̃ x���−1�/���+1� + �B0 − 1�� f̃ x�−�2�2+�+1�/���+1�

�34�

�1 − B0� f̃ x���−1�/���+1�, �35�

which coincides with the scaling form of Eq. �1� and should
be contrasted with Eq. �14� with hydrodynamic interactions.
On the other hand, the result in the limit of the strong forcing

� f̃ b�N0
�� is not altered, and �1 is given by Eq. �21�. It is in
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this limit only that the requirement �� f−1 is fulfilled reflect-
ing the saturation of chain deformation due to the complete
stretching; therefore, the earlier conjectures are approved
�8,11�. For smaller forces, the soft elasticity of the chain
results in more involved responses as we have seen; the
stronger driving results in the more intense chain deforma-
tion, and this deformation behavior affects the absorption
dynamics.

III. SUMMARY AND PERSPECTIVES

There would be many practical situations in which the
externally imposed velocity gradient exceeds the inverse re-
laxation time of long polymers. If the external field acts lo-
cally, effects associated with nonequilibrium response, i.e.,
the propagation of the tensile force along the chain, are ex-
pected to show up. We focused on the problem of absorption
or aspiration into a localized hole and demonstrated how
such a process can be physically described.

One of the most relevant situations of aspiration dynamics
studied here is the polymer translocation through a pore. We
should note, however, in the problem of biopolymer trans-
port through a membrane pore, the role of specific interac-
tions may become essentially important �9,10,14�. We ne-
glect all the complications associated with such a factor and
focus on universal aspects as a consequence of a polymeric
nature; in this sense, the present analysis may be regarded as
an “ideal” version in view of the relation with the problem of
polymer translocation. Such an “ideal” situation would be
now experimentally feasible thanks to the advance in nano-
scale fabrications �15,16�.

The advantage of the present framework is a rather wide
range of applicability to related problems. As mentioned in
Sec. I, if the chain is suddenly pulled by its one end, the
response is nonuniform both in space and time. The resultant
transient dynamics of the chain extension can be analyzed in
a similar way �see Appendix C�. The same physics is also
expected in the escape process of a confined polymer from a
planner slit �17�. The present framework is also applicable to
the relaxation �shrinkage� dynamics of an initially stretched
polymer �12�. Considering hierarchical structures common in
polymeric systems, such nonequilibrium dynamics in a
single chain level would be expected to show up in macro-
scopic material properties too. We hope that the present
study provides the basic insight involved in the driven non-
equilibrium process of polymer absorption and its related
problems, and future investigations including the comparison
with the numerical �20� and even real experiments would be
valuable.
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APPENDIX A: CONTINUITY EQUATION

In this appendix, we shall discuss the relation between
integral and differential forms of the mass conservation

equation. We define h�x�=��x�S�x� and �h�x�dx=H�x� for
the concise notation. Then, the integral form of the mass
conservation �Eq. �7�� is written as

H�0� − H�− R�t�� + M�t� = N�t� . �A1�

The variation of this equation with the variable transforma-
tion from x to u=x−v�t�t leads to

�dH�u=−v�t�t − �dH�u=−R�t�−v�t�t + dM�t� = dN�t�

⇔ h�0��− vdt� − h�− R�t���d�− R�t�� − v�t�dt� + dM�t�
�A2�

=
dN

dR
dR�t� . �A3�

Since h�0�v�t�dt is the number of absorbed monomer during
the time interval dt, the first and the last terms in the left-
hand side are canceled out. The resultant equation is the
differential form of the mass conservation �Eq. �10��.

APPENDIX B: SOLVING DIFFERENTIAL EQUATIONS

In this appendix, we illustrate some technical details of
how to solve the differential equations. Let us see Eq. �10�,
which is coupled with Eqs. �6�, �8�, and �9�. Using the defi-
nition of density ��x� and the cross-sectional area S�x� �given
below Eq. �7�� and also Eq. �8�, one obtains

�R�t��1−��/� − �yR�t���1−��/��
dR�t�

dt
� �yR�t���1−��/�v�t� .

�B1�

By setting force balance conditions �Eqs. �6� and �9��, Eq.
�B1� is transformed to

�R�t��1−��/� − � kBT

f
R�t�	�1−��/2��dR�t�

dt

� � kBT

f
R�t�	�1−��/2� f

�sR�t�
. �B2�

The solution of Eq. �B2� with the initial condition Eq. �4� is

� f̃ b��1−3��/2���R�t�
b

	�3�+1�/2��
y0

R�t�

− B0� f̃ b�−1��R�t�
b

	2�
y0

R�t�

=
t

�0
, �B3�

where we introduce the numerical coefficient B0 of order
unity to replace the relation symbol � with �. Using the
function  �Eq. �12��, the above equation is rewritten in the
compact form

� f̃R�t���1−3��/2��R�t�
b

	3

�R�t�� =
t

�0
. �B4�

The time �1 �Eq. �14��, when the tensile force reaches the
chain end, is obtained by putting R�t�=R0 in this equation.
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Equation �11� is obtained after normalizing t by �1. Equa-

tions �27� and �30� in the case of strong pulling �1� f̃ b

�N0
�� are obtained in the same way just by replacing the

lower limit of the integral in Eq. �B3� with l�t� �Eq. �25�� and
the right-hand side with �t−�1

*� /�0.

APPENDIX C: PULLING ONE END

Here, we shall briefly discuss another example of non-
equilibrium response, i.e., the transient dynamics of the
chain stretching pulled by its one end �Fig. 4�. The difference
between the absorption and the present stretching process
was pointed out by Kantor and Kardar �8�, which is clearly
recognized by comparing Figs. 1 and 4; in the former, the
site of action is fixed in space and the chain portion after
crossing this point gets relaxed, while in the latter case, the
site of action is moving with the velocity v�t�=dl�t� /dt and
the chain portion after crossing the origin is still tensed and
contributes to the friction.

In this case, too, one can distinguish three different re-

gimes depending on the applied force: �i� trumpet � f̃ b�1

� f̃R0
�, �ii� intermediate �1� f̃ b�N0�, and �iii� strong limit

with complete stretching � f̃ b�N0� by monitoring the force
acting on the last monomer at the free boundary. �Note that
the border between regimes �ii� and �iii� is different from the
absorption case.� Just as the case in the absorption dynamics,
one can write down basic equations: the local force balance

y�x� �
kBT

�sv�t�� 1

x + R�t�	 �− R�t� + yR�t� � x � l�t�� ,

�C1�

the mass conservation



−R�t�

l�t�

��x�S�x�dx = N�t� . �C2�

One also needs Eq. �8�, the condition for the free boundary
�Eq. �6�� and the total force balance;

y�x = l�t�� �
kBT

f
�C3�

⇔l�t� + R�t� �
f

�sv�t�
. �C4�

By substituting Eq. �C1� into Eq. �C2� and using Eqs. �6� and
�C4�, one obtains the relation between v�t� and N�t�:

� f

kBT
	2�−1� kBT

�v�t�
	�

� bN�t��. �C5�

The steady state velocity vss after the arrival of the tensile
force at the other end is found by setting N�t�=N0 in this
equation:

vss �
kBT

�sR0
2 � f̃R0

��2�−1�/�. �C6�

On the other hand, there is another relation between v�t�
and N�t�, which is available from Eqs. �8� and �C4�:

bN�t�� �
f

�sv�t�
− l�t� �C7�

=
f

�sv�t�
− 


0

t

v�t��dt�. �C8�

Combining Eqs. �C5� and �C8� leads to an integral equation
for v�t�, the solution of which is

f

�sv�t�2�1 − B0��skBTv�t�
f2 	1−�� � t �C9�

�where we dropped a small term associated with the initial
condition�. The time �1 for attaining the steady state is found
by setting v�t�=vss in this equation:

�1 � �Z� f̃R0
��2−3��/��1 − B0� f̃R0

���−1�/�� . �C10�

After rescaling the time and velocity by �1 and vss, respec-
tively, Eq. �C9� is rewritten as

�v�t�
vss

	−2�1 − B0� f̃R0
�−1/�v�t�

vss
� �

t

�1
. �C11�

The above argument is valid when the applied force does

not exceed the threshold f̃ b�1. For larger forces, the nonlin-
ear effect associated with the finite chain extensibility be-

comes apparent. In the limit of strong forcing f̃ b�N0, the
lateral chain size of the tensed portion becomes just y�x�=b
and the analysis becomes very easy as in the case of absorp-
tion dynamics. Repeating the same argument as above, one
finds

l(t)

yR(t)

N(t)

f

x

R(t)

FIG. 4. �Color online� A dynamical response of a polymer ini-

tially at rest to the strong pulling by its one end �N0
−�� f̃ b�1�. A

coordinate is defined in such a way that the origin is the position of
one chain end at time t=0 and that end is starting to be pulled to the
right �x�0� direction. Monomers in the gray region are under the
influence of the tensile force, while monomers in the rear part are
yet relaxed. The distance between the boundary �front of the tension
propagation� and the origin and the size of the largest blob at the
boundary are denoted as R�t� and yR�t�, respectively. Monomers are
sequentially labeled as 1 ,2 , . . . ,N0 from the pulled end to the other.
N�t� is the label of the monomer residing at the boundary at time t.
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vss �
f

�sbN0
=

kBT

�sb
2

f̃ b

N0
, �C12�

�1 �
�sb

2N0
2

f
= �R� f̃R0

�−2 f̃ bN0, �C13�

� vss

v�t�
	2�1 − B0�vssN0

v�t�
	�−1� �

t

�1
. �C14�

The asymptotic form of the velocity v�t� of the pulled end is

v�t� � � f

�st
	1/2

. �C15�

In the intermediate case 1� f̃ b�N0, one should have cross-
over between the above two regimes just like the absorption
dynamics. Equation �C13� was proposed and confirmed by
Monte Carlo simulation in the limit of strong forcing �8�. It
is important to notice that in the case of pulling one end, too,
the earlier conjecture is approved for the strong force limit
only.
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